

#S38
Q: Why Static Test Vector Memory?

The trend in test vector memory design is

dynamic – in a double sense. The high-

speed SRAM, the traditional component of

Vector Memory designs, is being replaced

by DRAM. So what’s the reason for that?

Cost and Marketing. The ratio of DRAM

cost to SRAM cost is approaching 1 to 10 –

it is increasing fast. Secondly, the vector

depth mantra of the industry calls for

deeper vector memory. So why not

dynamic memory (it also sounds better than

“static” memory). We prefer to call them

“highly volatile memories”. Volatile since

the content is lost if powered off; highly

volatile since a dynamic memory looses its

mind even with power on. Either we have

to access their content or we have to apply

REFRESH. The latter is a vile concept that

over the years has caused enormous grief in

system designs (in a footnote we refer to a

U.S. Navy problem).

Fortunately, provided we can guarantee

sequential reads through an entire page, we

can actually dispense with refresh. This is

often nice for vector memory since in so

many cases we simply don’t care for

branching, looping and those sorts of

things. But sometimes we do. And often

we can reduce the required memory size if

we employ looping.

More importantly, there are examples when

looping is virtually compelling. One such

application is match mode. We wait for the

device to initialize itself before continuing

on. For how many vectors? Can’t always

tell, although there is a maximum. To

always apply this maximum (and it is

troublesome to estimate this maximum for

every mode) would be a waste vector space

and test time. Indeed, using dynamic

memory may not even suffice; often

millions of vectors will pass before the chip

is stable.

But we cannot escape the fact that Dynamic

is more than Static. Or can we? Yes, we

can. Typically, simulation involves a lot of

repetition, i.e. looping. So should the test

engineer ascertain where the loops are and

how to apply them? No, we don’t think so.

These days, that sort of drudgery is done by

machines. So the HiLevel computer does it

for you automatically. It is called vector

compression. And that is the subject of

another Q’nApp.

Footnote:
A U.S. Navy memory refresh problem was documented in a paper, “CMM Collision Test on the TOPAZV” by D. Gardner, J. Mikoljai and S.

Wisher. Here is an excerpt from that paper:

“The CMM refresh collision problem occurs when the wrong data is read from CMM memory due to a ‘collision’ between an incoming memory

read and an internal memory refresh clock. Collisions between two asynchronous signals, like read and refresh on the CMM, are normal and an

arbitration circuit is provided to decide which signal has priority. This arbitration circuitry on the CMM however, occasionally allows the two

signals to interfere with each other and causes the read address to be corrupted. This causes the read cycle to return the wrong data. This error

occurrence ranges from 1 in a million to 1 in several billion.”

An acceptable amount of error? Not when such refresh problems cause a “blip” to appear on a sailors SONAR screen and then disappear.

Using a HiLevel TOPAZV test system with its exclusive pattern-match mode and automation tools, the Navy engineers were able to create the

unique conditions required to manifest the collision phenomenon. Their discovery led to a redesign of the CMM arbitration circuitry; a measure

that might have required an act of Congress, but in reality only required some clever users of a HiLevel tester to prove the proper course of

action.

It may be worth mentioning here that the HiLevel TOPAZV systems employ some DRAM as vector memory.

