

#E7

Q: How can I loop through a short set of code 10,000 times?

Using the Program Mode to repeat sequences of vectors

First, you must employ Program Mode
(invoked by selecting "Programmed” in the
“Sequencing" box under Run Setup).
Your objective is to set a counter to n,
which is the number of times you wish to
repeat a sequence of vectors, and then to
execute these test vectors n times. Our
examples use "Hex" as the radix selected for
address from the View drawer.

Begin by filling the entire program space in
the Vectors window with NOOP's so that
the vectors will simply execute in a
sequential fashion. Pull down the Vector
drawer and select Program Fill + NOOP +
Fill It. Did you notice how quickly the
HiLevel HRISC processor filled your vector
program?

Next go to the vector that is the starting
point of the repetitive vectors. Three
vectors prior to that, load a count value
using the LOAD and LOADX commands
(LOAD takes care of the three least
significant hex digits, while LOADX
accesses the most significant hex digit --
forming a 64K repeat counter since the
most significant digits must be three or
less). Then for the two last vectors in the
loop use the instructions DEC (decrement)
and CJMP [ADDRESS] (conditional jump),
where ADDRESS is the hex address of the
first vector in the loop that follows the
LOAD process. Let us illustrate this with
an example.

Consider the following vector segment:

23A NOOP H 00 1 AXXX 0 0 10 00A1 1
23B NOOP L 11 1 XXXX 0 0 10 BF00 1
23C NOOP H 10 1 AXXX 0 0 10 BF00 1
23D NOOP H 00 0 BXXX 0 0 10 BF00 1
23E NOOP L 00 1 AXXX 0 0 10 BF00 1
23F NOOP L 00 0 AXXX 0 0 10 BF00 1
240 NOOP L 00 1 AXXX 0 0 10 BF00 1
241 NOOP L 00 0 AXXX 0 0 10 BF00 1
242 NOOP L 00 1 AXXX 0 0 10 BF00 1
243 NOOP L 00 0 AXXX 0 0 10 BF00 1
244 NOOP L 00 1 AXXX 0 0 10 BF00 1
245 NOOP L 00 0 AXXX 0 0 10 BF00 1
246 NOOP L 00 1 AXXX 0 0 10 BF00 1
247 NOOP L 00 0 AXXX 0 0 10 BF00 1
248 NOOP L 00 1 AXXX 0 0 10 BF00 1
249 NOOP L 00 0 AXXX 0 0 10 BF00 1
24A NOOP L 00 1 AXXX 0 0 10 BF00 1
24B NOOP L 00 0 AXXX 0 0 10 BF00 1
24C NOOP L 00 1 AXXX 0 0 10 BF00 1
24D NOOP L 00 0 AXXX 0 0 10 BF00 1
24E NOOP H 11 1 AXXX 0 0 10 BF00 1
24F NOOP H 00 0 XXXX 1 1 11 0000 1

Vector example for Repeat looping

Here, vectors 23E and 23F are repeated
eight times. While this normally may not
be worth the expansion effort, it certainly
would be if the vectors were repeated a
hundred thousand times or more, and the
mechanism for doing the expansion is the
same. The following shows the end result:

23B LOADX 0 L 11 1 XXXX 0 0 10 BF00 1
23C LOAD 8 H 10 1 AXXX 0 0 10 BF00 1
23D NOOP H 00 0 BXXX 0 0 10 BF00 1
23E DEC L 00 1 AXXX 0 0 10 BF00 1
23F CJMP 23E L 00 0 AXXX 0 0 10 BF00 1
24E NOOP H 11 1 AXXX 0 0 10 BF00 1

Vector example: eight repeats

The savings here is only 14 vectors.
However, if the vectors were repeated
10,000 times, the savings would be 19,998

vectors and the pattern generator program
would look like this:

23B LOADX 2 L 11 1 XXXX 0 0 10 BF00 1
23C LOAD 710 H 10 1 AXXX 0 0 10 BF00 1
23D NOOP H 00 0 BXXX 0 0 10 BF00 1
23E DEC L 00 1 AXXX 0 0 10 BF00 1
23F CJMP 23E L 00 0 AXXX 0 0 10 BF00 1
24E NOOP H 11 1 AXXX 0 0 10 BF00 1

Vector example: 10,000 repeats

If you use the $L command in CaeLink you
can compress redundant vectors
automatically during the translation process.
The CaeLink translator will provide a PRG
file along with the translated vector file,
containing all of the vector loops needed for
execution.

More information about the Programmed
Mode can be found in the ETS2k User
Manual.

Also See:
Q'nApp #E8: Patgen pattern matching
Q'nApp #E32: Symbolic Addressing Mode
Q'nApp #E33: MASK and UNMSK
Q'nApp #E39: "PRG" file attachment to SET file
Q’nApp #E44: Vector files without path
